Tuesday, June 22, 2010

Cause of soil erosion

The rate of erosion depends on many factors. Climatic factors include the amount and intensity ofprecipitation, the average temperature, as well as the typical temperature range, and seasonality, the wind speed, storm frequency. The geologic factors include the sediment or rock type, its porosity and permeability, the slope (gradient) of the land, and whether the rocks are tilted, faulted, folded, or weathered. The biological factors include ground cover from vegetation or lack thereof, the type of organisms inhabiting the area, and the land use.

In general, given similar vegetation and ecosystems, areas with high-intensity precipitation, more frequent rainfall, more wind, or more storms are expected to have more erosion. Sediment with high sand or silt contents and areas with steep slopes erode more easily, as do areas with highly fractured or weathered rock. Porosity and permeability of the sediment or rock affect the speed with which the water can percolate into the ground. If the water moves underground, less runoff is generated, reducing the amount of surface erosion. Sediments containing more clay tend to erode less than those with sand or silt. Here, however, the impact of atmospheric sodium on erodibility of clay should be considered.

The factor that is most subject to change is the amount and type of ground cover. In an undisturbed forest, the mineral soil is protected by a litter layer and an organic layer. These two layers protect the soil by absorbing the impact of rain drops. These layers and the underlying soil in a forest are porous and highly permeable to rainfall. Typically, only the most severe rainfall and large hailstorm events will lead to overland flow in a forest. If the trees are removed by fire or logging, infiltration rates become high and erosion low to the degree the forest floor remains intact. Severe fires can lead to significantly increased erosion if followed by heavy rainfall. In the case of construction or road building, when the litter layer is removed or compacted, the susceptibility of the soil to erosion is greatly increased.

Roads are especially likely to cause increased rates of erosion because, in addition to removing ground cover, they can significantly change drainage patterns, especially if an embankment has been made to support the road. A road that has a lot of rock and one that is "hydrologically invisible" (that gets the water off the road as quickly as possible, mimicking natural drainage patterns) has the best chance of not causing increased erosion.

Many human activities remove vegetation from an area, making the soil easily eroded. Logging can cause increased erosion rates due to soil compaction, exposure of mineral soil, for example roads and landings. However it is the removal of or compromise to the forest floor not the removal of the canopy that can lead to erosion. This is because rain drops striking tree leaves coalesce with other rain drops creating larger drops. When these larger drops fall (called throughfall) they again may reach terminal velocity and strike the ground with more energy then had they fallen in the open. Terminal velocity of rain drops is reached in about 8 meters. Because forest canopies are usually higher than this, leaf drop can regain terminal velocity. However, the intact forest floor, with its layers of leaf litter and organic matter, absorbs the impact of the rainfall.

Heavy grazing can reduce vegetation enough to increase erosion. Changes in the kind of vegetation in an area can also affect erosion rates. Different kinds of vegetation lead to different infiltration rates of rain into the soil. Forested areas have higher infiltration rates, so precipitation will result in less surface runoff, which erodes. Instead much of the water will go in subsurface flows, which are generally less erosive. Leaf litter and low shrubs are an important part of the high infiltration rates of forested systems, the removal of which can increase erosion rates. Leaf litter also shelters the soil from the impact of falling raindrops, which is a significant agent of erosion. Vegetation can also change the speed of surface runoff flows, so grasses and shrubs can also be instrumental in this aspect.

One of the main causes of erosive soil loss in the year 2006 is the result of slash and burntreatment of tropical forest. When the total ground surface is stripped of vegetation and then seared of all living organisms, the upper soils are vulnerable to both wind and water erosion. In a number of regions of the earth, entire sectors of a country have been rendered unproductive. For example, on the Madagascar high central plateau, comprising approximately ten percent of that country's land area, virtually the entire landscape is sterile of vegetation, with gully erosive furrows typically in excess of 50 meters deep and one kilometer wide. Shifting cultivationis a farming system which sometimes incorporates the slash and burn method in some regions of the world. This degrades the soil and causes the soil to become less and less fertile.

No comments:

Post a Comment